Time-inconsistent multistage stochastic programs: Martingale bounds

نویسندگان

  • Georg Ch. Pflug
  • Alois Pichler
چکیده

Multistage stochastic programs show time-inconsistency in general, if the objective is neither the expectation nor the maximum functional. This paper considers distortion risk measures (in particular the Average Value-at-Risk) at the final stage of a multistage stochastic program. Such problems are not time consistent. However, it is shown that by considering risk parameters at random level and by extending the state space appropriately, the value function corresponding to the optimal decisions evolves as a martingale and a dynamic programming principle is applicable. In this setup the risk profile has to be accepted to vary over time and to be adapted dynamically. Further, a verification theorem is provided, which characterizes optimal decisions by suband supermartingales. These enveloping martingales constitute a lower and an upper bound of the optimal value function. The basis of the analysis is a new decomposition theorem for the Average Value-at-Risk, which is given in a time consistent formulation.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bounds and Approximations for Multistage Stochastic Programs

Consider (typically large) multistage stochastic programs, which are defined on scenario trees as the basic data structure. It is well known that the computational complexity of the solution depends on the size of the tree, which itself increases typically exponentially fast with its height, i.e. the number of decision stages. For this reason approximations which replace the problem by a simple...

متن کامل

On Dynamic Decomposition of Multistage Stochastic Programs

It is well known that risk-averse multistage stochastic optimization problems are often not in the form of a dynamic stochastic program, i.e. are not dynamically decomposable. In this paper we demonstrate how some of these problems may be extended in such a way that they are accessible to dynamic algorithms. The key technique is a new recursive formulation for the Average Value-atRisk. To this ...

متن کامل

Scenario tree modelling for multistage stochastic programs

An important issue for solving multistage stochastic programs consists in the approximate representation of the (multivariate) stochastic input process in the form of a scenario tree. In this paper, forward and backward approaches are developed for generating scenario trees out of an initial fan of individual scenarios. Both approaches are motivated by the recent stability result in [15] for op...

متن کامل

Monotonic bounds in multistage mixed-integer linear stochastic programming: theoretical and numerical results

Multistage stochastic programs bring computational complexity which may increase exponentially in real case problems. For this reason approximation techniques which replace the problem by a simpler one and provide lower and upper bounds to the optimal solution are very useful. In this paper we provide monotonic lower and upper bounds for the optimal objective value of a multistage stochastic pr...

متن کامل

Barycentric Bounds in Stochastic Programming: Theory and Application

The design and analysis of efficient approximation schemes is of fundamental importance in stochastic programming research. Bounding approximations are particularly popular for providing strict error bounds that can be made small by using partitioning techniques. In this article we develop a powerful bounding method for linear multistage stochastic programs with a generalized nonconvex dependen...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • European Journal of Operational Research

دوره 249  شماره 

صفحات  -

تاریخ انتشار 2016